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Abstract--The algorithm to compute the Eigen 
value decomposition of a Para Hermitian 
polynomial matrix is described. This lead to 
diagonalizing the polynomial matrix by the Para 
unitary “similarity” transformation. The algorithm 
uses Para unitary matrix and perform 
generalization of conventional Hermitian matrix 
diagonalization. A convergence proof is presented. 
The application to Broadband Signal Subspace 
Decomposition, signal processing, MIMO Precoding 
for Filter Bank Modulation Systems is highlighted 
in terms of strong decorrelation and multichannel 
data compaction. The performance parameters are 
presented to demonstrate the capability of the 
algorithm. 

 
I.INTRODUCTION 

Polynomial matrices have been used for many 
years in the area of control. They play an important 
role in the realization of multivariable transfer 
functions associated with MIMO systems. Few years 
back they have become more widely used in the 
context of (DSP) digital signal processing and 
communications [22]. Broadband subspace 
decomposition [12], characteristic areas of 
application include broadband adaptive sensor array 
processing [23], [24], MIMO communication 
channels [12] [26], and digital filter banks for sub 
band coding [25] or data compression [24]. 

A polynomial matrix is simply a matrix whose 
elements are polynomials. It may be viewed 
equivalently, as a polynomial with matrix 
coefficients. In this paper, we will use the term 
polynomial to include Laurent polynomials which 
can include negative powers of the indeterminate 
variable. We denote a polynomial matrix in the 
indeterminate variable. 

Numerical procedures have previously been 
developed for a range of polynomial matrix 
factorization and reduction operations such as the 
Smith–McMillan decomposition [23]. To date, 
however, very little attention seems to have been 
devoted to polynomial matrix techniques equivalent 
to the eigenvalue decomposition (EVD) or singular 
value decomposition (SVD) for conventional 
matrices with scalar elements [11]. The 
development and implementation of such a 
technique is the subject of this paper. The Eigen 
value decomposition of conventional Hermitian 

matrices plays a major role in DSP. For example, it 
is at the heart of the Karhunen–Loeve transform for 
optimal data compaction. This paper comprises of 
the following sections as, PEVD technique in 
section II, application of PEVD in section III, and 
conclusion in section IV.  

 
II. TECHNIQUE OF POLYNOMIAL EIGEN 

VALUE DECOMPOSITION. 
 
 The Eigen vectors are numbers and vectors 
associated to square matrices, and jointly they give the 
Eigen-decomposition of a matrix which analyzes the 
structure of this matrix. Although the Eigen 
decomposition does not be present for all square 
matrices, it has a mainly simple expression for a class 
of matrices frequently used in multivariate analysis 
such as correlation, covariance, or cross-product 
matrices. The Eigen-decomposition of this type of 
matrices is vital in data because it is used to find the 
maximum or minimum of functions linking these 
matrices. For example, principal component analysis is 
obtained from the Eigen-decomposition of a covariance 
matrix and gives the least square approximation of the 
original data matrix. Eigenvectors are also referred to 
as characteristic vectors and latent roots or 
characteristic equation. These Set of Eigen values of a 
matrix is also called its Spectrum. 
 

A. NOTATIONS AND DEFINITION 
 

 There are a number of ways to describe Eigen 
vectors; the most frequent approach defines an 
eigenvector of the matrix A. As a vector u that satisfies 
the following equation 
 

Au=λu (1) 
 
When rewritten, the equation (1) becomes 
 

(A−λI) u=0 (2) 
 
Where λ is a scalar called the eigenvalue associated to 
the eigenvector. In a similar manner, we can also state 
that a vector u is an Eigen vector of a matrix A if the 
length of the vector is distorted when it is multiplied by 
A. Traditionally we put together the set of eigenvectors 
of A in a matrix denoted U. Each column of U is an 
eigenvector of A. The Eigen values are stored in a 
diagonal matrix denoted as Λ, where the diagonal 
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element gives the Eigen values and all other values are 
zeros and the first equation can be written as 
 

AU=UΛ (3) 
 

Or  
 

A=UΛU−1 (4) 
 

B.POSITIVE DEFINITE MATRICES 
 
 Positive semi definite matrices used extremely 
in statistics. The Eigen decomposition of these matrices 
always exists, and has a mostly appropriate form. A 
matrix is said to be positive semi-definite when it can 
be get as the product of a matrix by its reverse. These 
imply that a positive semi-definite matrix is always 
symmetric. So, formally, the matrix A is positive semi-
definite if it can be obtain as 
 

A=X XT (5) 
 

 For a definite matrix X, Positive semi-definite 
matrices of particular relevance for multivariate 
analysis positive semi-definite matrices include 
correlation matrices. Covariance and, cross-product 
matrices. The important property of a positive semi-
definite matrix that its eigenvalues are eternally 
positive or null, and that its eigenvectors are pair wise 
orthogonal when their eigenvalues are different. The 
eigenvectors are also poised of real values. Because 
eigenvectors corresponding to different eigenvalues are 
orthogonal, it is likely to accumulate all the 
eigenvectors in an orthogonal matrix. This implies the 
following equality 
 

U−1=UT (6) 
 

We can, therefore, express the positive semi-definite 
matrix A as  
 

A=UΛUT (7) 
 

Where UTU=I are the normalized eigenvectors; if they 
are not normalize then UTU is a diagonal matrix. 
 

C. DIAGONALIZATION 
 

 When a matrix is positive semi-definite we 
can rewrite Equation 7 as 
 

A=UΛUT⇐⇒Λ=UTAU (8) 
 

This shows that we can change the matrix A into an 
equivalent diagonal matrix. As a consequence, the 
Eigen-decomposition of a positive semi-definite matrix 
is frequently referred to as its diagonalization. 
 

D. EIGEN-DECOMPOSITION 
STATISTICAL PROPERTIES   

 
 The Eigen decomposition is important 
because it is disturbed in problems of optimization. For 
example, in main component examination, we want to 
analyze I×J matrix X where the rows are account and 

the columns are variables telling these observations. 
The goal of the study is to find row factor score, such 
that these factor scores give details as much of the 
variance of X as possible, and such that the sets of 
factor score are pair wise orthogonal. This sum to 
achieve matrix as 
 

F=XP (9) 
 

Under the constraint that 
 

FTF=PTXTXP  (10) 
 
Is a diagonal matrix /orthogonal matrix) 
 

PTP=I (11) 
 
Where P is an orthonormal matrix. There are numerous 
ways of obtaining the solution of this problem. One 
possible advance is to use the technique of the 
Lagrangian multipliers where the limitation from 
Equation 11 is expressed as the multiplication with a 
diagonal matrix of Lagrangian multipliers denoted Λ as  
 

Λ (PTP−I) (12) 
 

This amount to defining the following equation 
 

L=FTF−Λ (PTP−I) =PTXTXP−Λ (PTP−I) (13) 
 

In order to find the values of P which give the 
maximum values of L, we first calculate the derivative 
of L relative to P 
 

∂L/∂P=2XTXP−2ΛP (14) 
 
And then set this derivative to zero 
 

XTXP−ΛP=0⇐⇒XTXP=ΛP (15) 
 

 Because Λ is diagonal, this is obviously an 
Eigen-decomposition problem, and this indicates that 
Λ is the matrix of Eigen values of the positive semi-
definite matrix XTX controlled from the main to the 
smallest and that P is the matrix of eigenvectors of 
XTX associated to Λ. lastly, we find that the factor 
matrix as 
 

F=PΛ1/2 (16) 
 

The variance of the factors scores is equal to the 
eigenvalues 
 

FTF=Λ1/2 PT PΛ1/2=Λ (17) 
 

 Consider that the sum of the eigenvalues is 
equal to the trace of XTX, this shows that the first 
factor scores pull out as much of the variances of the 
original data as possible, and that the second factor 
scores pull out as much of the variance gone uncertain 
by the first factor, and so on for the remaining factors. 
By the way, the diagonal elements of the matrix Λ1/2 

are the singular values of matrix X.  
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III. APPLICATION OF PEVD 
 

A. BROADBAND SIGNAL SUBSPACE 
DECOMPOSITION 

 
 In this the extraction of foetal ECG signals 
from cutaneous electrode recordings is considered. 
Most existing methods cannot account for the 
broadband nature of the ECG signals, producing 
(FECG) foetal ECG estimates that are not sufficiently 
accurate. A novel way of addressing this problem: the 
broadband equivalent of (PCA) principal component 
analysis is applied through the use of an algorithm that 
generalizes the EVD to polynomial matrices; FECG 
extraction is achieved by way of an orthonormal 
projection of the data into the broadband foetal 
subspace, whereby the maternal ECG and noise 
components are suppressed. The algorithm is 
contrasted with conventional PCA and the classical 
multi-reference adaptive noise cancelling method. The 
three methods are applied to real multi-channel ECG 
recordings obtained from a pregnant woman.  
 

i). EXTRACTION OF FOETAL 
ELECTROCARDIOGRAM (ECG)  

 
In prenatal diagnosis of foetal heart conditions, the 

electrocardiogram (ECG) signal from the foetal heart is 
of minute value [13]. The foetal ECG (FECG) is an 
electric signal that can be measured in a non-invasive 
manner by applying cutaneous electrodes to the 
abdomen of an expectant mother. This practice leads to 
a pollution of the recorded signals with interference 
mainly from the maternal heartbeat. Moreover, the 
signal-to-noise ratio of the foetal heartbeat is, in 
general, significantly lower than that of the maternal 
heartbeat [14]. Accurate measurement of the FECG is 
also hampered by the existence of other forms of 
interference and noise, such as uterine electro 
myographic signals, maternal respiration, thermal noise 
from the electronic equipment, etc. This creates the 
need for signal processing techniques that can recover 
the FECG components from the corrupted recordings. 

 
ii). TECHNIQUES USED IN THE 

EXTRACTION OF FECG 
 
 Much research effort has been devoted to the 

detection and extraction of FECG, using techniques 
such as, neural networks [15], fuzzy logic [16], IIR 
adaptive filtering combined with genetic algorithms 
[17], Widrow’s multi-reference adaptive noise 
cancelling (MRANC) method [18],[19] and blind 
signal separation (BSS) [16]-[19]. BSS applies higher 
order statistical methods, such as independent 
component analysis (ICA), and uses multiple 
simultaneous recordings in order to exploit the spatial 
diversity between the different electrodes. These 

algorithms typically exploit second order statistics to 
perform principal component analysis (PCA), which 
generates uncorrelated sequences. Then higher order 
statistics are exploited in order to complete the 
separation process. However, if the total power of the 
FECG signal across all the channels is significantly 
different from the interferers, then the PCA carries out 
most of the separation. This is the philosophy behind 
the important class of foetal extraction techniques in 
[18], [19], which are based on the singular-value 
decomposition (SVD), or Eigen value decomposition 
(EVD), [18]. A drawback of the basic SVD-based 
technique is that signal separation performance is 
dependent on the position of the electrodes, which is 
still a matter of heuristic rules and trial-and-error [18]. 

 
iii). SECOND ORDER SEQUENTIAL BEST 

ROTATION (SBR2) ALGORITHM 
 
 A principal limitation imposed on the PCA (and 

ICA) technique is the assumption that the mixing 
process is linear and instantaneous, which is expressed 
as multiplication by a single scalar mixing matrix. This 
does not take into account the possible spatiotemporal 
dynamics of the underlying acoustical processes, e.g., 
propagation of the acoustic waves from the various 
sources, such as the maternal and foetal hearts; and the 
broadband muscle, observation and quantization noises 
[19]. These effects can be modeled by convolutive 
mixing. Following convolutive mixing, it is necessary 
to impose decorrelation, not just at the same time 
instant for all signals, but over a suitably chosen range 
of relative time delays. This is referred to as strong 
decorrelation [20], and a matrix of suitably chosen 
filters is required to achieve it. In [14], a technique that 
gives an extension of the EVD to polynomial matrices 
is proposed, which can perform strong decorrelation, to 
a good approximation. It is called the second order 
sequential best rotation (SBR2) algorithm. This uses 
the SBR2 algorithm in the context of broadband 
subspace decomposition. 
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FIG. 1 CONVERGENCE OF SBR2 ALGORITHM  
B. FILTER BANK MODULATION SYSTEMS 

BASED ON PSVD  
 

In this we consider the design of a linearly precoded 
MIMO transceiver based on (FB) filter bank 
modulation for transmission on broadband frequency 
discriminatory fading channels. The modulation FB is 
capable of lowering the channel dispersion at sub-
channel level. Nevertheless, the sub-channels 
experience some level of inter-symbol interference. 
Therefore, the pre-coder and the equalizer are designed 
exploiting the polynomial singular value 
decomposition (PSVD). In particular, consider two 
types of FB system. The first method represents 
maximal frequency restricted pulses and it is referred 
to as filtered multi tone (FMT) modulation, while the 
second uses more time confined pulses with 
rectangular impulse response, i.e., it corresponds to the 
conventional (OFDM) orthogonal frequency division 
multiplexing system. The act of the measured systems 
in terms of capacity over typical WLAN channels, 
showing that PSVD precoding with FMT can 
outperform the performance of precoded OFDM in the 
2 by 2 antenna case particularly for moderate to low 
SNRs. 

 
 i). PSVD ALGORITHM  
 
A precoding method has been proposed in [21]. It is 

based on the (SVD) singular value decomposition of 
(PSVD) polynomial matrices which it is also referred 
to as (BSVD) broadband SVD. This method is 
characterized by high computational complexity that is 
O (L3) where L is the order of the channel, or 
equivalently the channel length in number of taps. This 
allows dropping the difficulty of the PSVD algorithm 
since it operates at sub-channel level which has a 
length shorter than that of the broadband channel. 

 
 
ii). APPLICATION OF PEVD 
 

The approach has been presented on a MIMO 
transceiver based on FB modulation systems and on the 
PSVD decomposition. In exacting, we have considered 
two types of FB which deploys either time confined 
prototype pulses (OFDM) or frequency confined 
prototype pulses (FMT). We have shown the 
performance in terms of capacity of the considered 
systems in typical WLAN channels. MIMO-FMT can 
afford higher capacity compared to MIMO-OFDM 
only in certain conditions, in particular when the power 
level of the noise at the receiver is higher than the 
power level of the interferences. In presence of high 
interference power, MIMO-OFDM is the best option 
because due to the CP it can cope with limit imposed 
by the interference. 

 

 
 

FIG. 2 BIT ERROR RATE (BER) VERSES SIGNAL 
TO NOISE RATIO (SNR) 

 

 
 

FIG. 3 CONVERGENCE OF PSVD ALGORITHM 
 

C. PARA-HERMITIAN SYSTEMS OF 
APPROXIMATE EIGEN VALUE 
DECOMPOSITION 

 The (EVD) Eigen value decomposition of a 
Hermitian matrix in terms of unitary matrices is well 
known. We present an algorithm for the (AEVD) 
approximate EVD of a (PH) Para-Hermitian system. 
Here, the approximate diagonalization is carried out 
successively by applying degree-1 finite impulse 
response (FIR) Para unitary (PU) transformations.  
The system parameters are chosen to make the 
(ZODE) zero order diagonal energy none decreasing 
at each stage. Simulation results presented for the 
design of a signal-adapted PU (FB) filter bank show 
close agreement with the behavior of the infinite 
order (PCFB) principal component FB.  
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i). APPROXIMATE EVD (AEVD) 
ALGORITHM 

 
 More emphasis has thus been on obtaining an 
approximate EVD (AEVD) using realizable PU 
functions, such as (FIR) finite impulse response PU 
systems [21, 22]. An AEVD algorithm for PH 
systems via successive degree-1 FIR PU 
transformations.  We show how to choose the 
parameters of such a FIR PU system to make the 
ZODE of the resultant PH system none decreasing.  
As more transformations are applied, the PH system 
approximately becomes more diagonal. As our aim 
is to maximize the ZODE, the entire impulse 
response of the PH system need not be known.  
 

  
 
FIG.4 CONVERGENCE OF AEVD TECHNIQUE 
 
 The algorithm can thus run in the time or 
frequency domain, unlike SBR2 which must operate in 
the time domain. Also, at each stage of our algorithm, 
the FIR PU system degree increases by 1. This is in 
contrast to SBR2, which has a variable degree increase 
at each step. 
 

D. ROBUST BROADBAND ADAPTIVE  
BEAMFORMING  

 
 A novel technique for robust broadband 
(ABF) adaptive beam forming is proposed. The 
technique, referred to as (DW-PEVD) domain-
weighted polynomial matrix eigenvalue 
decomposition, is founded on a basic paradigm shift 
from one of broadband noise cancellation to one of 
signal separation. It uses the (SBR2) second-order 
sequential best rotation algorithm to perform second 
order convolutive blind signal separation after 
applying a simple transformation to the data. The 
transformation is designed to exploit prior knowledge 
in the form of an estimated steering vector. The 
method is quite distinct from existing algorithms for 
robust broadband ABF and can offer improved 
performance in many cases.  

i). BROADBAND ABF 
 

 Adaptive beam forming (ABF) conjunction 
with sensor arrays for the purposes of interference 
suppression in diverse fields such as 
communications, radar, sonar and seismology. Much 
effort has been devoted to beam forming for 
narrowband signals where very good results can be 
obtained [2]-[5]. The theory of narrowband arrays 
has been well established because of its duality with 
spectral estimation. However, much work remains to 
be done on broadband adaptive arrays where both 
spatial and temporal sampling is exploited. The two 
most popular array structures that have been studied 
for broadband ABF are the linearly constrained 
minimum variance beam former introduced by Frost 
in [6] and its alternative the (GSC) generalized side 
lobe canceller, proposed by Griffiths and Jim in [7]. 
Their implementation is based on the premise of 
adaptive noise cancellation. These beam formers are 
very sensitive to array imperfections, such as 
calibration errors, which cause a mismatch between 
the assumed steering vector and the actual one 
required for the (SOI) signal-of-interest. In the 
presence of errors, the beam formers tend to suppress 
the SOI as if it were an interference signal, and so 
their performance degrades significantly. Over recent 
years, effort has been devoted to developing 
techniques for robust broadband ABF that alleviate 
the effects of array imperfections [8]-[11].  
 

 ii). DECOMPOSITION TECHNIQUES 
 

 The use of a novel time-domain algorithm 
introduced in [12], called the (SBR2) algorithm, which 
imposes strong decorrelation [13] on a set of signals. 
The strong decorrelation is achieved using a 
multichannel all-pass filter, which is guaranteed to 
preserve the combined power of the signals at every 
frequency. The SBR2 algorithm effectively extends the 
symmetric (EVD) eigenvalue decomposition [11] from 
narrowband to broadband applications in signal 
processing. The potential benefit of the SBR2 algorithm 
to underwater acoustic signal processing is illustrated in 
the context of robust ABF. It is shown how broadband 
ABF may be carried out in a very robust manner by 
extending the new robust ABF technique of [11] to 
broadband ABF. The resulting algorithm is called the 
DW- PEVD technique. It is based on a shift of 
paradigm away from that of adaptive noise cancellation 
towards one of convolutive semi-blind signal 
separation.  
  (BSS) Blind signal separation algorithms 
typically exploit second order statistics to perform a 
(PCA) principal components analysis, which 
generates uncorrelated sequences. Then (HOS) 
higher order statistics are exploited to determine the 
"hidden" rotation matrix and so complete the 
separation process. BSS can usually separate the SOI 
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from the interference signals with minimal 
underlying assumptions, but these assumptions do not 
emphasize the SOI over the unwanted signals, nor 
can the algorithms utilize prior information. If the 
total power of the SOI across all the channels is 
significantly different from the interferers, then the 
PCA carries out most of the separation. In the same 
way, convolutive BSS is possible using just a PEVD 
stage provided the spectra of the signals are distinct. 
The DW-PEVD exploits this fact by using 
information about the SOI and the sensor array to 
modify the total power of the desired signal so it 
becomes distinct from that of the interferers. 

 
iii). POLYNOMIAL MATRIX EIGEN  
VALUE DECOMPOSITION (PEVD) 
 
  It uses the second-order sequential best 
rotation ('SBR2) algorithm to compute polynomial 
matrix eigenvalue decomposition (PEVD). It allows 
available information about the SOI to be included in a 
soft manner. This avoids the problem of cancelling the 
SOI due to inaccurate prior knowledge without 
completely disregarding this information. The 
algorithm essentially implements a form of conclusive, 
semi-blind, second order signal separation where the 
approximate prior knowledge is used to pre-emphasize 
the SOI. Although the technique we have introduced 
uses a scalar parameter to enhance the SOI, we could 
easily have used an appropriate filter, such as one that 
is temporarily matched to the SOI. This filter can then 
be used to design an appropriate space-time blocking 
matrix that further enhances the correlation of the SOI 
components across all the channels being fed into the 
PEVD stage. Evaluation of this beam former has 
shown that it gives improved performances. 
 

 
 
FIG. 5 PERFORMANCE MEASURE OF PEVD 

ALGORITHM 
IV. CONCLUSION 

 
 The performance measure of PEVD in different 
applications like broadband signal sub space 
decomposition, MIMO communication, FIR-PU FB 
(filter bank), Broadband ABF etc., and the 
decomposition technique uses various algorithms such as 

SBR2, Eigen value decomposition, singular value 
decomposition. These entire algorithms have been 
shown to convergence. With the usage of the algorithms 
the polynomial Eigen values obtained from various 
applications attains strong decorelation. Hardware 
implementation of these techniques can be achieved by 
means of FPGA architecture can be used as future work. 
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